Mathematics (Science)	10th Lahore Board 2017	Paper: II		
Time: 20 min.	OBJECTIVE	Marks: 15		
11110	(Group-I)	marks: 15		

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank.

An equation which remains unchanged when x is replaced by $\frac{1}{v}$ is called a/an:

- (A) Exponential equation (B) Reciprocal equation
- (D) Quadratic equation (C) Radical equation
- If α, β are the roots of $3x^2+5x-2$, then $\alpha+\beta$ is:

(A)
$$\frac{5}{3}$$

(B)
$$\frac{3}{5}$$

(C)
$$\frac{-5}{3}$$

(D)
$$\frac{-2}{3}$$

Cube roots of -1 are:

(A)
$$-1$$
, $-\omega$, $-\omega^2$

(B)
$$-1, \omega, -\omega^2$$

(C)
$$-1$$
, $-\omega$, ω^2

(D)
$$1, -\omega, -\omega^2$$

The fourth proportional w of x:y:v:w is:

7.5			
he me	100	. 41	1.4
(C)	xyv	, ,	178

If a:b = x:y, then alternando property is:

(A)
$$\frac{a}{x} = \frac{a}{y}$$

(B)
$$\frac{a}{b} = \frac{x}{y}$$

(C)
$$\frac{a+b}{b} = \frac{x+y}{y}$$

(C)
$$\frac{a+b}{b} = \frac{x+y}{y}$$
 (D) $\frac{a-b}{x} = \frac{x-y}{y}$

radian =:

(A) 115°

150° (B)

(C) 30°

(D) 135°

The set having only one element is called:

(A) Null set

- (B) Power set
- (C) Singleton set
- (D) Subset

If A⊆B then A – B is equal to:

(A) A

(B) B

(C) A-B

 $(D) \phi$

A frequency polygon is a many sided

- (A). Closed figure
- (B) Circle
- (C) Rectangle
- (D) Square

 $sec^2\theta =$ 10.

(A) 1-sin²θ

- (B) 1+tan²0
- (C) 1+cos²θ
- (D) 1-tan²θ

Radii of a circle are:

- (A) Double of the diameter (B) All unequal
- (C) Half of any chord (D) Four points

A tangent line intersects the circle at

- (A) Three points
- (B) Two points
- (C) Single point
- (D) Four points .

The arcs opposite to incongruent cetral angles of a

times the race (A) 1 (C) 3	of the diameter dius of the circ (B (D t and radius of) 2) 4	s how many
(C) Perpend	dicular (D) Not parallel	
Mathematics (Science)	10th Lahore	Board 2017	Paper: II
Time: 2: 10 Hrs.	SUBJE	CTIVE	Marks: 60
	Group-I) (SEC answers to any		ions:

Define a rational fraction. Resolve $\frac{1}{x^2-1}$ into partial fraction. Define Subset. iii. If L = {a, b, c}, M = {3, 4} then find L × M iv. Find domain and range of the binary relation, $R = \{ (1, 1), (2, 2), (3, 3), (4, 4) \}$ If (2a + 5, 3) = (7, b - 4), find a, b. vi. vii. Write two properties of arithmetic mean. viii. Define mode. The sugar contents for a random sample of 6 packs ix. of juices of a certain brand are found to be 2.3, 2.7, 2.5, 2.9, 3.1 and 1.9 milligram, find the median. Write short answers to any SIX (6) questions: (2×6=12) Define radian measure of an angle. Convert 15° to radian. ii. iii. Find T, when $\ell = 56$ cm, $\theta = 45^{\circ}$ IV. What is meant by zero dimension? ٧. Define chord of a circle. Vi. Define tangent to a circle. Vii. What is meant by sector of a circle. Viii. Define circumangle. İX. Define inscribed circle. (SECTION - II) Note: Attempt Three questions in all. Solve the equation by completing square: $11x^2 - 34x + 3 =$ (b) If $\alpha \cdot \beta$ are the roots of equation $\ell x^2 + mx^4$

0,
$$(\ell \neq 0)$$
 then find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$. (4)

(a) Using theorem of componendo-dividendo find the value of: $\frac{x+2y}{x-2y} + \frac{x+2z}{x-2z}$ if $x = \frac{4yz}{y+z}$ (4)

(b) Resolve into partial frations: $\frac{x-11}{(x-4)(x+3)}$ (4)

(a) If $U = \{1, 2, 3, ..., 10\}$, $A = \{1, 3, 5, 7, 9\}$ and $B = \{1, 4, 7, 10\}$ then verify that $A - B = A \cap B'$

(b) Calculate the variance for the data: (4)
10, 8, 9, 7, 5, 12, 8, 6, 8, 2

(a) Prove that: $\sin\theta(\tan\theta + \cot\theta) = \sec\theta$ (4)

(b) Draw two perpendicular tangents to a circle of radius 3 cm.

Prove that if two chords of a circle are congruent then they will be equidistant from the centre. (8)

OR Prove that the measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc.

Mathematics (Science)	10th Lahore Board 2017	Paper: II
Time: 20 min.		Marks: 15

(Group-II)

Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting

(4)

	or filling two or mor	e circles will result in zero mark in				
1.1.	Find x in proportion 4:x :: 5:15:					
2000	(A) $\frac{75}{4}$	(B) $\frac{4}{3}$				
+ 2	(C) $\frac{3}{4}$	(D) 12				
2.	The different numb	er of ways to describe a set is:				
4	(A) 1	(B) 3				
	(C) 2	(D) 4				
3.	The solution set of	equation $4x^2 - 16 = 0$ is:				
	(A) {± 4}	(B) {4}				
	(C) {± 2}	(D) ± 2				
4.	The extent of va	riation between two extreme				
	observations of a d	ata set is measured by:				
1 -	(A) Range	(B) Average				
	(C) Quartiles	(D) Median				
5.	$\frac{3\pi}{4}$ radian =					
	(A) 115°	(B) 150°				
	(C) 30°	(D) 135°				
6,	$\sec^2\theta =$					
	(A) 1-sin ² θ	(B) 1+tan²θ				
	(C) 1+cos ² θ	(D) 1–tan²θ				
7.	The distance of any called:	point of the circle to its centre is				
	(A) Diameter	(B) A chord				
	(C) Radius	(D) An arc				
8.	The portion of a cir is called:	cle between two radii and an arc				
1,30						

9.	(C)	Sector Chord third proportions		Segment Diameter and y ² is
	(A)	$\frac{y^2}{x^2}$	100102	x ² y ² .
	(C)	$\frac{y^4}{x^2}$	(D)	$\frac{y^2}{x^4}$
10.	Tan	gents drawn at t	he end	s of diameter of a circle
	are	to eac	h other	
	(A)	Parallel	(B)	Non-parallel
	110	Collinear	Contract to the second	Perpendicular
11.	Hov	v many common	tangen	its can be drawn for two
	tou	ching circles:		
	(A)	2	(B)	
7	(C)		(D)	
12.	If A	⊆ B then A - B is	equal	to:
	(A)	A	(B)	
08 20 19:00	(C)	В	(D)	A - B
13.	lfα,	β are the roots of	of $x^2 - x$	-1 = 0, then product of
	the	roots 2α and 2β	15.	
		-2	(D)	
1.70	(C)	4	(D)	ment is called:
14.	The	4 e set having only	one ele	Power set
	(A)	Null set Singleton set	(D)	Subset
15.	Cu (A)	be roots of -1 are -1 , $-\omega$, $-\omega^2$ -1 , $-\omega$, ω^2	(B) (D)	$-1, \omega, -\omega^{2}$ $1, -\omega, -\omega^{2}$

Mathematics (Science)	10th Lahore Board 2017	Paper: II
Time: 2:10 Hrs.		Marks: 60
	SECTION - I) (Group-II)	warks: 6

- Write short answers to any SIX questions: (2×6=12)
- Define radical equation.
- Write the equation in standard form: $\frac{x}{x+1} + \frac{x+1}{x} = 6$
- Define simultaneous equations. iii.
- Evaluate: $(9-4\omega-4\omega^2)^3$ iv.
- Without solving, find the sum and the product of the roots of quadratic equation:

$$(\ell + m)x^2 + (m + n)x + n - \ell = 0$$

- Use synthetic division to find the quotient and the remainder, when $(x^2 + 7x - 1) \div (x + 1)$
- Define direct variation. VII.
- viii. Find fourth proportional: 4x4, 2x3, 18x5
- If 3(4x 5y) = 2x 7y, find the ration x : y. IX.
- Write short answers to any SIX (6) questions:

 $(2 \times 6 = 12)$

- Define a rational fraction.
- How can we make partial fractions of $\frac{7x-9}{(x+1)(x-3)}$
- Define complement of a set.
- iv. Find a and b if (a-4, b-2) = (2, 1)
- Define domain and range of a relation.
- Find A \cap B if A = {2, 3, 5, 7}, and B = {3, 5, 8}
- The marks of seven students in Mathematics are as VII. follows. Find Arithmetic Mean:

45, 60, 74, 58, 65, 63, 49 Find geometric mean of 2, 4 and 8. Define mode. viii. Write short answers to any SIX (6) questions: X $(2 \times 6 = 12)$ Define radian. Express 225° into radian. In a circle of radius 12 m, find the length of an arc jį. which subtends a central angle θ = 1.5 radian. Define projection of a point. įV. Define radial segment. ٧. Define the tangent to a circle. . vi. Define sector of a circle. vii. Define central angle. viji. Define geometry. viii. (SECTION - II) Attempt Three questions in all. Note: Solve the equation: $2x + 5 = \sqrt{7x + 16}$ (a) Use synthetic division to find the values of ℓ and m, if (x + 3) and (x - 2) are the factors of (b) the polynomial x3 + 4x2 + 2lx + m If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$ (a, b, c, d, e, f, \neq 0), then show (4)that:

that: (4)
$$\frac{a}{b} = \sqrt{\frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}}$$
 x-11 (4)

Resolve into partial fractions: If U = {1, 2, 3, 4, 10}, A = {1, 3, 5, 7, 9}, (b)

(a)

 $B = \{1, 4, 7, 10\}$ then prove that $B - A = B \cap A'$

(b) The marks of six students in mathematics are as follows. Determine variance: (4)

Students	1	- 2	3	4	5	6
Marks	60	70	30	90	80	42

(a) Prove that: $\frac{1+\sin\theta}{1-\sin\theta} - \frac{1-\sin\theta}{1+\sin\theta} = 4 \tan\theta \sec\theta$

(b) Inscribe a circle in an equilateral triangle ABC with each side of length 5 cm. (4)

Prove that two chords of a circle which are equidistant from the centre, are congruent. (8)

OR Prove that the opposite angles of any quadrilateral inscribed in a circle are supplementary.

(4)